
Rational Approximations to Generalized 
Hypergeometric Functions 

By Jeffy L. Fields 

I. Introduction and Summary. In [1], Bellman gave a formal scheme for develop- 
ing rational approximations to the exponential integral, and the error function. In 
[2], Luke formally generalized Bellman's scheme to include functions defined by 
Laplace type integrals, paying particular attention to the generalized hypergeo- 
metric functions (see Section II for definition) 

(1 1) A+F/z) = '( ) f es't'1,F' (pa Xt) dt, 
q 2 p + 1, Re(a) > O. 

In specific cases, both Bellman and Luke made certain choices of free parameters 
in their formal schemes and obtained rational approximations which gave excellent 
agreement with the true values. Except in very special cases, however, neither 
author proved convergence of the generated rational approximations to the desired 
limit. 

In Theorems I and II, we develop representations for the error of very general 
types of rational approximations to certain broad classes of generalized hyper- 
geometric functions. As an immediate application of these representations, Corol- 
laries II and V prove that the rational approximations developed by Bellman and 
Luke actually converge to the desired limit. In Section V, the efficiency of these 
rational approximations are displayed in two numerical examples. 

The representations in Theorems I and II are derived essentially by showing 
that the error satisfies a certain nonhomogeneous differential equation, and then 
representing the error in terms of the solutions of the corresponding homogeneous 
differential equation, using Lagrange's method of variation of parameters. The 
analysis is related to Lanezos r-method, see [3]-[5], and resembles in several aspects 
an analysis of Weber, as given in [6], concerning the Hankel functions H." (z), 
i = 1,2. 

II. Notation and Basic Development. The generalized hypergeometric function 
pFq(z), see [7], is defined by the formal expression 

(2.1) pFq(z) = 
a, 

( 
... 

= 
a 

Z k!_ ' 
\Pt ). *,Pe 10ok (p k! 

where 

(2.2) ( rf)o= r+_) 
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We assume that no aj is equal to any pi, and that no pj is a nonpositive integer. 
For ease in writing, we employ the contracted notation 
(2.3) pF,(z) = pFq (a ) (aP)k 

Thus (ap)k is to be interpreted as P1 (aj)k and similarly for ( pq)k . Considered as a 
power series in z, pFq(z) has a radius of convergence equal to infinity if p < q, 
unity if p = q + 1, and (in general) zero if p ? q + 2. From (2.2) we see that if 
sonme a, is a negative integer (-n), 

(2.4) (_t)k (-n)k 
r 

=(n.+ +) (k) 
kic r(n -kc+ 1)r(k +1) k 

and the infinite series (2.1) terminates at k = n. If no aC is a negative. integer, a 
meaning can still be given to pFq(z), p _ q + 2, by considering it as the asymptotic 
expansion as z -* 0, of a certain type of contour integral. 

More generally, we define Meijer's G-function, see [7], by 
m n 

125) fla, O ll r(pj-s) llr(1-a + s) 
(2.5)G:n( 

a 
p a..pq) 2r L z! ds, 

II r(i - pj?s) II r(aj -s) 
j inm+I j-n+1 

where an empty product is interpreted as 1, 0 ? m < q, 0 _ n c p, and the param- 
eters are such that no pole of r(pj - s), j = 1, * *, m coincides with any pole of 
r( - a + s), k = 1, * , n. Then the contour integral in (2.5) is defined for at 
least one of the following contours Lj . 

L1 runs from -ico to +ico so that all poles of r(p, - s), j 1, * , m, are to 
the right, and all the poles of r(i - ak + s), k =1, * *, n, to the left of L1 . The 
integral converges if p + q < 2(m + n) and I arg z I < [m + n - (p + q)/2Jrr. 

L2 is a loop starting and ending at + oo, and encircling all poles of r(p, -s), 
j-1, * , m, once in the negativedirection, but noneof the poles of r(1 - ak + s), 
k = 1, * * , n. The integral converges if q ? 1 and eitherp < q orp = q and I z I < 1. 

L3 is a loop starting and ending at - oc, and encircling all poles of r(1 - ak + s), 
k = 1, * , n, once in the positive direction, but none of the poles of r(pj s), 
j = 1, *.., m. The integral converges if p > 1 and either p > q or p2- q and 
Izi > 1. 

If the contour integral in (2.5) is defined for more than one of the Lj, the re- 
sulting contour integrals can be shown to be equal. We let L be a generic notation 
for any of the Li. Near infinity, L can be taken as a straight line parallel to the 
appropriate axis. Using the same shorthand notation as in (2.3), we rewrite (2.5) as 

Gn 
n 

(z[a )=G zgp) 

(2.6) P;~z~ii. ,P / q( Pq 
_ _1 _r(p-_s)r( a_n_ +s) z' ds. 

-21ri J r(i - Pq + s)r(a!P - S) 

If all the poles of the integrand in (2.6) are simple, it is easy to see from the 
residue theorem, that 
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P:n 

can be represented as a sum of well-defined hypergeometric functions. Also, from 
the integral definition, it follows that 

(2.7) Z'P z (Z | p P: z ( Y+ p ) \4 1k, /'+p 

and 

(2.8) pt q 1 p (nn( Pq G Pa) 

Consider now for arbitrary p and q, 

Ep(z) G= 1-a 
(2.9) Epta(z) = al?Pf+( 0, 1 - p) 

27ri L r(S+P) (-z) ds, 

under the assumption that no a,, j = 1, ... , p, is a nonpositive integer. If the 
contour L is moved n units to the right, and account is taken of the simple poles at 
k = 0 1 ., **n -1, then 

Ep,q(Z) - (-27ri) ZL (- r(-s)r(s + a)) 
(2.10) (27ri) k=0 a-~k r7(s + pq) (z 

+ f r(-s4-4n)r(s + n + ap) ( +n d 
+2riJ r(s +n +pq) -) d 

n-l r(k + ap) zk 

(2.11) k-O r(k + 
pq) k! 

(2.11) zn r(-s)r(s + 1)r(s + n + ap)(-z)d 
+2i J r(s + 1 + n)r(s + n + pq) 

r(ap) 
n-1 

(ap)k 
Zk 

(2.12) r(pq) 
kb=O 

(Pg)k ki! 

1, nlp+1 (Z 0, 1- n- a, 
+l0q+2 

- 
,-n, 1-n- 2 

where r(a,p) stands for HP=i r(a1) and a similar remark holds for r(pq)-such 
notations will be used throughout. If p < q + 1 or p = q + 1, I arg (-z) j < 7r 
and I z I < 1, then the G-function on the right of (2.12) approaches zero as n .-* oc 
Equation (2.12) then becomes 

Ep, (z = rap,Fq ZJ, 
(2.13) P q r(Pq) \(Pq / 

p < q+1 or p = q+1, arg(1-z) I < 7r. 

Note that Eq+i,q(z) analytically extends q+iFq(z) for I arg (1 -z) I < 7r. However, 
if p > q + 2, then Ep,,,q(z) is still well-defined, and the formal series 
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r_a__ a r (ap) (a.) z (2.14) r(p) r(p,) k-O (Pq)k k' 

serves as its asymptotic expansion uniformly in a proper sector of the z-plane, as 
z -O 0, see [8]. We denote this relationship by 

(2.15) r(av) ap . /| 

,8 
_ 

p(q + 1) > ,1arg (z) < (2 + P)r/2, z O. 

If in (2.11), we replace n by the integer k + 1 - a, a = 0 or 1, multiply the 
resulting equation by an arbitrary constant AAn,kYk and sum from k = 0 to n, we 
obtain 

n is 

EP,,(z) , An,k = X As,ky Pk-a+l(Z) 
kcO kIcO 

(2.16) 
+ JL| r(-s 0 

r(s + k-a + pq+ ) (z)k ds 

(2.17) Pk(Z) -= -(j+ a,) = 
j- r(J + P9+i-)z, P()=0 gi =1 

Now set 
n 

(2.18) fAtl(k) = A fn) =fn() 
kr 

n 

(2.19) V.n(Z, -y) = E An,k,t PkPa+i() 
k 0 

(2.20) = '~ r(r + ap) rf Ir+a 

(2.21) = --k IAn,rr(r-k + a,,) 
kla r-k r(r - k + pg+-) 

1-a . 

F(z, ) = s2 I r(-s)r(s + 1)(-z)O 

(2.22) 2Tri J A .r8 ka 1 a) 
A *kr(s?+ k-aa+1+ ) (z)k ds 

(2.23) = zl A a n(z)kGV+19 (Z2 0, -k + a a 
k-0 n.'i+.e2 ,k+.-li 

Then (2.16) can be written as 

(2.24) E,PQ(Z) = Erj(z. y) + R Q(Z, y), 

where 

(2.25) E,q] (z, y) = Wn(Z, y)/f,y); Rn(z, 'y) = Fn(z, y)/fn(y). 

Thus EB"](z, y) is a rational approximation to E,,p(z), and R "](z, y) is its cor- 
responding error. For future reference we note that 

(2.26) Fn(z, 0) = An,oE,,q(z), a = 1. 
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The significance of the parameter (a) is plainly seen, if in (2.21) one successively 
sets z = i` and - = 0. For then p. ( o , 0) equals zero ifa = 1, and is not equal to 
zero if a = 0. We designate these cases as inhomogeneous and homogeneous, re- 
spectively. Classically, the homogeneous and inhomogeneous cawes correspond to 
taking the odd or even convergents of certain continued fractious, see [7] and [9]. 
For some purposes, one case may be more useful than the other. 

We shall now show that E,,p(z) satisfies a certain homogeneous differential 
equation, and that F.(z, y) satisfies a corresponding nonhomogeneous equation. Let 

q+1 p 

I= I (a + Pi- 1)z- I (5 + ai) 
i-l j-l 

(2.27) = (6 + Pq+i1) - z( + a1), 

8 =zO = Zd- b $ PO+l =1 

The differential operator 5 has the very nice property that for constants p and a, 

(2.28) (5 + o-)z' = z'(p + O.). 

Applying 5C., q(2D) to F.(z, y) as given by (2.22) (y is independent of z), we obtain 

3CP,Q(D)FO(ZaAn (8+k 1+% 
(2.29) r | f (-s)r(1 + 8) r A,.(-1)l(-)kF(8 + k --a + 1 + ap) 

JCp,q(D)(_Z)+bz +l d8 

1 f r()r(1 z An,k(-1)I,( _7)kF(8 + k - a + 1 + ap) 

(2.30) 27riJ' k-O r(s+ k- a+ 1 + pf+z) 

.(-Z ' f(s + k - a + pq+i) + (- z)(s + k - a + 1 + a,)) d8. 

Then moving the contour of the first integral in (2.30) one unit to the right, 
and taking account of the residue at s = 0, we obtain 

5Cp,q(Z)Fn(ZI ) = (-2)ri) Limit sr(-8)r(1 + s) 

Ankzl`(z-I)kr(s + k - a + 1 + a,)(s + k - a + Pq+i) 
k-O r( + k- a + 1+PQ+) J 

1-a r 
(2.31) + z . r(- - 1)r(2 + s) 

An (IZ)kr(s + k - a + 2 + a,)(s + k -a + 1 + PQ+1) (-z)J+' ds 
k-0 r(s + k-a +2-pf+) 

+ 2 r(-8)r(i + s) , An7Z)(2k r(s + k-a + 2 + ap) (z).+ F P-8l'1 
8)0 rL +1+P 



APPROXIMATIONS TO GENERALIZED HYPERGEOMETRIC FUNCTIONS 611 

But since 

(2.32) r(-s - 1)r(2 + s) = -r(-s)1(1 + s), 

the two integrals in (2.31) differ by a minus sign. Taking account of this, we arrive 
at 

(2.33) aCp,q(5))Fn(Z -Y) -YzSna(7z), 

(2.34) Sa_a(w) = E A J+a r(k + 1 + ap) k 

From equation (2.26), it is then easy to see that 

(2.35) 3Cp,q(5D)p,q(Z) = 0. 

Since f,,y) is independent of z, the error Rl n(z, y) = Fn(z, y)/fn(y) satisfies 
essentially the same differential equation as F&(z, y), i.e., 

(2.36) ep, (D)R 'y](Z, Y) = 
aZSSa(Yz)/fn(y)- 

The nature of 

(2.37) JCP,J(3)y(z) = 0 

changes drastically as p < q + 1, or p > q + 2, and these cases will be treated 
separately in Sections III and IV, respectively. Our representations of the R (n I (z, y) 
depend essentially on characterizations of the Green's function for (2.37). 

III. The Case p < q + 1. Keeping the same notations as in Section II, the main 
result of this section is 

THEOREM 1. If, p and q being non-negative integers, 
(1) p _ q or p = q + 1, z $ 1 and I arg (1 -z) I < 7r, 
(2) ai $ a negative integer or zero, j = 1, *. ,p 
(3) Re(pi) > Oj a 1, .* q, 

(4) a = 0 or 1, 
then there exists a function tGp,q(z, t)/ro(t) which is absolutely integrable with respect 
to t along any rectifiable path connecting zero and z, and with the property that if 
An,k7 kI k = 0, 1, * , n, are arbitrary constants, 

(3.1) pFqQ |) =Z A, Ank _ E ( ) An k + R (z ) 
PQ k=O j=a (Pq)j i 1! k=O r(aSp) 

Q 

P(pq) Rptq(z, 7) = aAn,o 7alpFq ( z) [ A,k 'Y71 
(3.2) F(ap) g q1 k0 A7k 

a r(Z t) ,n A + ( ap)Jk (nt) dt + (_)q ly Inka tG- 1: A* o 7 
t) 

kt aAn,AkY 
rot) k=O (pq)k ki k=O 

In the notation of Section II, (3.2) is equivalent to 

(3.3) F,(z, y) = a r(ap) An O a'lpF q z) + (-1) 70 rt(t) Sn-a(yt) dt 

It follows from (2.33) that to establish (3.3) we merely need to represent Fn(z, 7) 
in terms of the solutions of 
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X3Cpq(SD)y(z) = {(5 - 1 + Pq+l) - z(f + aP)}Y(Z) 

(3.4) = - 
i=o 

using Lagrange's method of variation of parameters. The nature of Cp,,q(D) follows 
directly from the result, see [10], 

m in 

(3.5) TI (6 + aj) _ E am,,jzmOm O,m,O = 1, 
j-l j=O 

where the a, , , are constants. In particular, we see that z 0 O is a regular 
singular point of (3.4), and that 

ro(z) =z`+ if p < q + 1 
(3.6) Zq+l(1 -z) if p = q +1. 
Under the assumption 

(3.7) pi- pi - integer or zero, i #j, i,j = 1, ***,q + 1, pq+l , 

it is easy to show by direct computation that the following functions form a basis 
of solutions around z = 0 for (3.4), 

(3.8) yj(z) = z'ip", Fl+, (1, 1+a j = 1,**, q + 
1 + 1k-I- pji 

Notice that the hypergeometric functions in (3.8) are actually pF,'s, as one of the 
denominator parameters is one, which cancels with the first numerator parameter. 
It follows directly from (3.7) and (3.8) that, if m is a non-negative integer, 

yj (m(z) = (-l) (pj - 1).(z)'-Pi-ml+pF,+,l 
11 1 + ap -pj z 

= (..1m(N -1)m(Z)~~~l?Fl+Q 2 - pj -rm, 1 + pq -pj 

(3.9) q, 

y(1(z) - ((Cp)m F (m + ap:zi 

Now set 
Yi?)t) **, q+1lt 

(3.10) W(t) ................ 
l(q)(t), ***, y i(t) 

yl(Z), * ,yq+,(Z) 
(0) ~~~(0) 

Yi? ( t), , Yq+1 (t 
(3.11) ~~~.................... 

Gp, (z, t) = Yi(), . . , yq+) (t) I 
yj(z)wj(t) paq Z, - ~~W(t) j==l W(t) 

Making use of the elementary results 

(0oDo, (a 00 

(3.12) (af1),@**, (aql- I (ai -1aj) ........................ 1 lC<i_q 

( 5.) ,"1 * , , . ( CO ) _ 



APPROXIMATIONS TO GENERALIZED HYPERGEOMETRIC FUNCTIONS 613 

and 

(3.13) 1 '+r 

II Pji Pf (Pi -P) ql (PrrP>) 
j=l 

one can show by simple manipulations, that 

wj(t) (_ ( )j-ltP-2 { + O(t)} 

(3.14) (-1) ro(t)W(t) HI (Pi - Pk) ]I (pr - Pi 
* ~~~~~~j>k21 q+1?r>j 

j 
=1, * 

,q + 1, t Ol 

and 

(3.15) G P(, t)l) tSna(-y) dt = ir(i + av) An ( ) azll + O(z)), z > 
0 ~~' Jo (- 1)Iqro(t) r7(1 + pq) A,yz1+Oz} -O 

Thus under the hypothesis of Theorem 1 and the conditions (3.7), the function 
tGp,0(z, t)/ro(t) is absolutely integrable between t = 0 and t = z (if p = q + 1, 
the path connecting 0 and z must avoid the ray from t = 1, to t= + oo). Hence, 
(2.33) implies that for proper connecting constants Cj(y, n), 

F. (z, ) = (i,y n) z'-'!,+pFl+ 
1 1 

+ Xpj P (3.1) jC,&, f)Z1'i+Fi+ k1+ Pq+1 - pj 
(3.16) 

2v. Z )l tna,t 
+ f Gp,q(z, t)tta7t 

+ o (-)r() 
dt. 

From (2.23) we see that Fn(z, y) is actually analytic at z = 0 for p < q + 1, and 
by comparing coefficients of z as z - 0, we conclude that 

Ci(,y, n? = O j = 1, .. *I* qp,. 

(3.17) C+iQ(y, n) = a r(%) Af,o Ya- 

Equation (3.16) then reduces to (3.3) under the restrictions of (3.7). However, 
these restrictions can be reduced to hypothesis (3) of Theorem 1, by noticing that 
for t 5 0, tGa,,(z, t)/ro(t) remains well-defined and is absolutely integrable from 
t = 0 to t = z when proper limits are taken. We remark that this condition (3) of 
the hypothesis is not overly stringent, as (2.12) reduces for p ! q + 1 to 

(3.18) IFm (O' ) =j + F ( m + ap z 
(pFq Vp |J= (pq)j j! (pq)m(l)m m + , m+ 

and Theorem 1 is applicable to the ,+,F,+, of (3.18) for m large enough. 
Theorem 1 leads immediately to the following results. 
COROLLARY I. If in Theorem 1, 

(1) y= r/z, O < < _ 1, 

(2) Lim Max |n 'An,k+a r(k + 1 + av) (rt/z)k / nk = 0, 
n-OO Ot/z<l k=O r(k + pq) k! k=O 
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(3) LimrAnO/ Z A,k(r/z)k 0, if a= 1, 
n--*0 k-0O 

then the rational approximations 

(3.19) An,k y k ( - A ekY 
k-0 je0 (pq)j j ! k -0 

converge to 

pFq ap z) 
\Pq/ 

as n -* oo, for each fixed ratio r/z; and the convergence is uniform on compact subsets 
C of the z-plane which exclude z = 0, if hypotheses (2) and (3) hold uniformly on 
C (if p = q + 1, the points of C must satisfy hypothesis (1) of Theorem 1). 

COROLLARY II. If in Theorem 1, 

(1) y=r/z, 0<r<1, 

(-n)X(n + X)k(-a + P)k 

(T)k(l - a + ap)k 

(3) X+2a+1> r+a>02 pj , j= 1,** ,q, 

then as n - oo, the rational approximations (3.19) converge uniformly to 

Fq (ap z 

on compact subsets C of the z-plane, which exclude z = 0 (if p = q + 1, the points of 
C must satisfy hypothesis (1) of Theorem 1). 

To show that the hypothesis of Corollary II actually satisfies the hypothesis of 
Corollary I, we note that 

Sn-a(rt/z) = -An,-k+ar(k + 1 + ap) (rt/z)k 
k-0 rQk + pq) kl 

(r(1 - a + a) (-n)a(n + X). 
(3.20) P~~~~(-a + Pq)QrT)a 

I-n +a,n + X+ a 
2F1K + 

r?+a rt/ ) 

and that 
n 

fn(r/z) = , An.k(r/z)k 
k=O 

(3.21) ') + 
= q+3Fp+l r/9z F (-nI, n - ),a + a,X 

rZ 

Thus Sn_-(rt/z) is essentially the classical Jacobi polynomial, see [111, which, under 
the hypothesis of Corollary II, has a uniform algebraic rate of growth with re- 
spect to n on the interval 0 ? tz-1 < 1, i.e., 

Sn(a(rt/z) = O(n"1), 0 ? tz' < 1 n-+ o, 
(3.22) 

al = Max 12a, 2a + 1 + X -2T, a -T + 3 
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From [12], the behavior of f.(r/z) under the above hypothesis can be deduced to be. 
essentially of exponential growth with respect to n. Let K(z) be a generic notation 
for a nonzero, continuous function of z independent of n. Then for p ? q, 

(3.23) f.(r/z) r(2n + X)r(n + 1)r(n - a + pq)(r/z)nK(z) 
r(n + x)r(n + r)r(n + 1-a + a.p) n 

and for p = q + 1, 

fn(rlz) n08 cosh nSK(z), arg (-z) < x, n X- 9o 

(3.24) '%.'n 2coshn7)K(z), argQi- ) <ir, n-*oo, 
cosh = 1 - 2r/z, cosh t7 =-1 + 2r/z, 

q q+I 

C2 =F, 2pi- , aj- r + a -q+ +2, 
j=l j=l 

uniformly on compact subsets C of the z-plane, which exclude z = 0 and satisfy 
the stated conditions of (3.23), (3.24)-the boundary of C is assumed independent 
of n. These results together with (3.22) imply 

(3.25) Lim Max I Sna(rt/z) i/f"(r/z) = 0, 
n,- O?Ct/z?i1 

which is exactly hypothesis (2) of Corollary I. This is sufficient to prove Corollary 
II. In fact, the same analysis yields the further result: 

COROLLARY III. If in Corollary II, 
(1) p ? q, 
(2) Rf4(z) denotes the error incurred by truncating the Taylor series of 

F (' | z) 

after n terms, then 

R["(z, r/z)/Rl(z) = Ofn'(4r)-'}, r/z fixed, 0 <r < 1 n oo, 

(3.26) a= p + a(q-p) 

+ Max {a, 2a + N - r + 2, 2a + r- 

This follows directly from the preceding and (3.18) with m replaced by n, i.e., 
if p < q, 

-. z) (ap)-Z' p+iFq+1 1, n + ap~ z) 

(3.27) (Pq)n(l)7 \n + 1, n + p| 

r(pq)r(n + ap)z( z fixed, n -0 
P(a,~)r(n +p,)r(n + 1)' zfxd n*o 

IV. The Case p ? q + 2. This case is much more complicated than the one 
treated in Section III, and the results are to a large degree incomplete. However, 
results are obtained for the important Whittaker function case. These are included 
in 
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THEOREM 2. If, p and q being non-negative integers, either 

p = q+2 and argvI <7r/2, or 

(1) p = q + 2,1 arg v I ir/2 and Re(a) >-1-q, or 

p=q+3, v>O and Re(a')>-1- q/2, 

(4.1) = a, - pi + (q -p)/2] (p - q -I 

prevail, and 

(2) v$O, 

(3) a, 5d negative integer or zero, j =1 PI , 

(4) Re(p,)>O, j>1 ' ,q,- 

(5) a=O or 1, 

then there exists a function G,,,(v, t)t-' which is absolutely integrable with respect to t 
dong the ray arg t = arg v, connecting v and infinity, and with the property that if 

Antko, Ik = 0, 1, , n, are arbitrary constants, 

(4.2).'. T ( '1 
(4.2): .,~k- r + a,) (-vf-' A,' +R -v y) 

= An A ?e -+ ) i E A, r]+ Rfnl fv-V1 
- ~~~ ~~ 1k' ~~I 1-a n- 

Rtn(-vF' y) = aAa,oe 
1 + (v| 1 v) [E A ]lJ 

(4+3) at An,A+4ar(1 + k + a,) (-y/t)k dt A 
+ 7y" G,,,(v, t)t' k, dtQc + An)kLk-o 

where 

Polo (v , 1 1-a )' 

is the Meijer G-function (see [71), 

G,+, (vi t 1 _ ap) r(a,) F (ap |v'), 
(4.4) Gp,q ol 1 - pq r(pq) F _ 

arg v I < (1 + p -q)7r/2, v oo. 

In the notation of Section II, (4.3) is equivalent to 

F (-v y) = aya7"'An,oG (v 6 0 1 - av) 

(4.5) o 
+ 7" r G,,p(v, t)t'P E Sn-a(-y/t) dt. 

k=-O 

To prove (4.5), we find it convenient to first make the change of variable 
z -=-v' in (2.33), which then becomes 
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(4.6) c,gn( YS)Fa(-v-, Vy) = 

where 

RC,v,, a= {(b1- a) + (-i)v(61 + 1 -pq+) 

(4.7) d 
61 = VD = TV d ' A=p-(q+1)>1, P +1, 

(4.8) Sn-a(w) = EA,+a( 1+ w k. 
k=O r(k + pq+i) 

We then proceed as in Section III to represent Fn(-V-', y) in terms of the solutions 
of 

V 

(4.9) Cp,q(OD)y(v) = If(v)Dy(v) = 0, 

using Lagrange's method of variation of parameters. From (3.5) we see that v =o 

is an irregular singular point of (4.9), and that 

(4.10) fo(v) = v". 

Under the assumption 

(4.11) pi-pj i integeror'vero, i $j; i,j-1, ***, q + 1; pq+i = 1, 

it is easy to show by direct computation that the following q + 1 functions are 
linearly independent solutions of (4.9) around v oo, 

yj(v) = G"P+1 -ia 
(4.12) -1 

- pj , 0, 1 - pi) .. 

P,, 

+ l, 

(4.13) Uvp,G+j (v P i Pi )- Pq 

(4.14) V r(1 + Pq-l - pj) i+pF1? ( 1 + Pq+1 - Pi / 

|argv < (2 + #3)7r/2, v oo- 

The *'s in (4.12) and (4.13) mean that the factors 1 - p, and pj - pj , respectively, 
are omitted. Equation (4.13) follows directly from (4.12) by (2.7), and (4.14) fol- 
lows from (4.13) by (2.15). Then if m is a positive integer, it follows directly from 
(4.14) that 

yjM )(v) ( 1), 
r(i + a) 

(1 
-pj) 

pIvj,mV mr(1 + pa+ - p (1 
17(1 + mq+ p- , j) -p 

2+PF2+q 
1 1 + PQ+i - Pi 

_ 

(4.15) * 2?pF2?q ( ' 1+ p<,l +a Pp 2 + 0) 2 

j =1, **-,q, J argv |< (2 + ,)r/2, v-+oo, 
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y(+4(v) - (-1)>'+1F(m + 1) (')' v-11 lF ( 1 +m, + aP v- 
(4.16) (Pq)i 2, 1 + pq I 

fargv < (2 + 3)7r/2, v ->cI 

For the renmaining p- (q + 1) =3 solutions of (4.9), we follow Meijer, see [13] 

Choose the integer w such that 

arg (ve (h)) < (,B + L)7r, h = 1, , 

0(h) = (1 - 2w -2h)r, 
(4.17) 

A - 2 if = 1, 

=1 if 3>1. 
Then the functions 

(4.18) Yq+l+h(V) 
= 

(4+?4,p(vet( Pq+1) h = 1, -, , 

= gh(v), 

fill out the basis of solutions of (4.9) around v =o. 

Meijer also gives in [13] the Barnes result, 

Gp', ( a,+1 (27r) ex/ {-2 K 

(4.19) |arg z I < (3+ A)r z co, 
_ p ~~~~~~q+l 

0 = p- (q + 1), = 2-'1 () + ?bj-ZE aj * -1 Ko 1, 
jl1 jl1 

which permits us to deduce the growth of the gh(v) for v near infinity. Then since 

g (m)(v) = dm Gfp (ve ,h /} 
uh = ~ 'jU'q+1,p t 

(4.20) 
= GNP+",?+ (ve i(h) -m, -nl + 1,-m + pq\ +2,p+l 

0,-rn + ap 
for m a non-negative integer (cancellation occurs among the parameters if i1 = 0), 

then it follows fromii (4.19) that 

gh(m) (v V ) (-V ) [ve 
O(h 

I4h ( V ) fh( m, v ), 

(4.21) 
| arg (vetO(h))I < ( + A)7r, V x, 

__ (27r) (-1) /2 h(h 10 
lPh(V) - p1/2) [vetI(h)V exp O[ve'o 

(4.22) p q 
(2 = [ - Z- pi -(1 + 0)/2] 01 

(4.23) (Ph(?11, v) = Z Kj(n)[ve (]hi/, IKo(m) = 1 
.=o 
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Now set 

Yl(?(t), , y0?)(t) 

(4.24) W(t) = . ....., 

Yi (P-1) 
(t) ..., Y,0 

Yi(0)(t0 
) 

Y2(0)(t) 

.-...p................. 

(4.25) Y(P-2)(t), .... , (p-2)(t 

G a,(V, t) = W(t) 

= t y,(v) wj(t) 

It follows then from simple manipulations that 

wj(v) - ( _)'' r(i + P,+- - pi)v--P}{1 + O(V 11)} 

(4.26) o(v) W(v) r(1 + a. - Pi) H (pi - Pr) H (Pr pi) *4.26) ro j<r j i<rSg+l 

j = 1, ,q+ 1, v ao, 

Wq+l+h(v) = Khv-2-0- exp {I3[veiV(h)lP8 { 1 + O(v") }, 
(4.27) fo(v) W(V) 

h = 1, *@* , v-oo 

where the Kh in (4.27) are suitable constants. Equations (4.26) and (4.27) were 
computed under the restrictions 

(4.28) 1argvI < (2+f3)7r/2, arg(veti(h))l < (i3+A)7r, h=1,) .. 

Since v = to is an irregular singular point of (4.9), it is not sufficient to consider 
the ordinary particular solution of (4.9) given by the method of variation of param- 
eters, as was done in Section III. Instead we consider the particular solution 

(4.29) Up,(v,7) = yj(v) f w,(t) ( 1y_l7Sana( 7/t) dt, 

where r (v, oo) is a path connecting v and Xc in such a manner that the resulting 
integrands are absolutely integrable along the r, (v, X ) and 

(4.30) Lim Us, 0(v, e) = 0 

under the restrictions (4.11) and (4.28). For the rj(v, cc ), j-1, * , q + 1, it is 
sufficient to choose the ray, arg t = arg v. For then, one can show, exactly as in 
Section III, that 

F2 y1 (v) I dt - rna(1 + cpg) a v- 
(4.31) P=1 J ),(v.o) W(t)fo(t) d(1 + p) V 

* 1 + 0(V"0)}, v ?-+ c, 
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under the restrictions (4.11) and (4.28). Then if 

(4.32) Re(a) > -1 -q/,B 

one possible choice for the rq+1+h(V, oo) h = 1, ... *, ,B is as follows. If 
Re[veiG(h')]I < 0, we choose rP+1+h(v, oo) to be the ray, arg t = arg v. If 
Re[vetO(h)Jll >0, and Im[vet=(h)Ill 0, we choose rI'+1+h(v, X ) to first proceed along 
the circle f v I eif, where sp increases from zero to so ( <,ir/2), e-iT/2[vei(O(h)+B)Il > O, 
and then along the ray, arg t = arg p. Note that I exp {f3[vei(G(h)+p)Il0} I is then a 
decreasing function of q' as sp varies between zero and so. Similarly, if Re[veG(h)]JlI > 0, 
and Im[vetO(h)Jl' < 0, we choose rF+l+h(V, oo ) to first proceed along the circle I v I e", 
where so decreases from zero to (p ( >- #7r/2), e-iT2[vei(O(h)+1)Il1 < 0, and then along 
the ray, arg t = arg (. Making use of (4.27) and the simple fact 

+00 

(4.33) 1 eCtF` dt = O(eCzCa), arg z I <ir, z-- oo 

it is easy to show that 

Wq+lh ( )dl a--a( 7+ 
(4.34) y++(V) Iq+1+VOO) W(t)7o(t) - V( V 00 

under the restrictions (4.11) and (4.28). Combining (4.31) and (4.34), we see that 
UP,Q(V, y) has the desired property (4.30). Notice that in the cases specified by 
hypothesis (1) of Theorem 2, the paths rq+l+h(V, oo ), h = 1, * , ,B, all reduce to 
the path, arg t = arg v. 

Then, just as in Section III, since F.( v-', y) and Upq (v, y) are both solutions 
of (4.6), we can write for suitable constants Cj(y, n, co), 

(4.35) Fn(-v-lx, y) = Cj(y, n, co)yj(v) + Up,(v), 
j-1 

where w is the integer used to construct the gh(v), see (4.17). Although Fn( -t', y) 
is not analytic at v = oo, it does have a finite limit there, i.e., from (2.23) we can 
write 

(4.36) LimF.(-v-' y) - ar(a,) a-14An, arg v I < (2 + 3)7r/2. 
,V--]'c r(p,,) 

This, together with (4.14), (4.21), (4.30) and (4.35), imply 

Cj(&y, n, co) = O, j=1,* .. *, q, 

(4.)Cq+(y, n, co) = a7y'-A.,o 

aind 

(4.38) Cq+l+h(?y, n, c) = 0 

if Re{ -,[vetG(h1)Il/ > 0 for sonme particular admissible value of v given by (4.28). 
For those cases specified by hypothesis (1) of Theorem 2, this determines all the 
(Cj(^y, n, co), j 1, * * - , p. If (3 ? 3, however, some (not all) of the Cq+lh (Q, n, co), 
h 1, * *, (,B fail to be defined by (4.38). We have not been able to evaluate the 
remaining Cq+l+h(y, n, w) rigorously. For those cases where (4.38) holds for all 
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h, h = 1,1 . -, fI, (4.35) reduces to 

(4.39) F,,(-v -, y) = a'Ang7+1 (a-1 A0 1 -a ) + Upq(vl 7) .Vql 0, 1 - p 

under the restrictions (4.11), which in turn can be weakened to hypothesis (4) of 
Theorem 2 by taking proper limits. Equation (4.39) is equivalent to (4.5) for those 
cases specified in Theorem 2. 

Just as Corollaries I and II followed from Theorem 1, the followingcorollaries 
follow from Theorem 2. 

COROLLARY IV. If in Theorem 2, 

(1) y = rv, 0 < r <1 

(2) Lim Max: | La An,k+ar(k + 1 + a,p) (-rv/t) / 2Ankrv)k = 
O 

n-00 O$w/t9, k1 r(k + pq) k. k 

n 

(3) Lim An,O/ Z An,k(rv)k = 0 if a = 

then the rational approximations 

(4.40) E k 
a 

r(i + ap) _ / (4.40) 
kE /n2..v f,An.kA k-0 iO r(j + pg) j! k-0 

converge to 

G"+1 (- 17_p) asn 0 a, for each fixed rv 

and the convergence is uniform on compact subsets C of the v-plane which exclude v = 0, 
if hypotheses (2) and (3) hold uniformly on C. 

COROLLARY V. If in Theorem 2, 

(1) y=rv, 0<r?1I 

(2) AI,i,k = (-n)k(n + X)k(-a + pq)k( l)k 
Antx - - 

(7)k(l - a + ap)k 

(3) X+2a+1> T+ a>O, pjxa, j=1,**,q, 

then, as n -+ , the rational approximations given by (4.40) converge uniformly to 

GP+1 (v0' 1 - p) 

on compact subsets C of the v-plane which exclude v - . 
As before, to show that Corollary V satisfies the hypothesis of Corollary IV, we 

merely need to note that 

S -0(-rv/t) =y"- An,k+ar(k + 1 + a.) (-rl'_t)_ 
k-0 rQk + Pq) k 

r(1 - a + a,,)(-n)a(n + X)a 

(4.41 ) P r(-a + pq)(T)a 

1-n + a,n+ + + a 2F. +arv/t} 
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(4.42) S (-a(-rv/t) = O(n"l), 0 < rv/t ? 1, n o, 

oi = Max f2a, 2a + 1 + X - 2'r, a- r + 2} 

and (see [12]), 

n 

fn(rV) = E Ak(rv) 

(4.43) 
= (a-Fn+l ( n n + X, -a + p 1 rv \ I-, 1 -a + ap 

fn(rv) r-' K(v)nu4exp {(2 + 3)(rmn2)(2+)l1, Iargv < r, n oo, 

94 = [3 + f + 2a(G + 1) - 2p- 2r + 2C1 - 2B1](2 + )-X, 

where K(v) is a nonzero, continuous function of v independent of n, for v 5 0. 
Equation (4.44) holds uniformly on conmpact subsets C of the v-plane which exclude 
v = 0, and satisfy the argument restriction of (4.44)-the boundary of C is as- 
sumed independent of n. This is sufficient to prove Corollary V. 

We note that Corollary V is applicable to the Whittaker function 

-a/2 # 

W.~(z) = Pr(-M;- K + ,)r(M- K +) 

(4.45)-/+I+ +I+ 
(12 (j-I | - + K + 2wy+ K + 2 

and the modified Bessel function 

(4.46) K ((z) ( Wo,),(2z). 

V. Numerical Examples. Here we give two applications of the preceding re- 
sults. For the first example, consider the ordinary Bessel function J,(z), defined by 

(5.1) oF1(1 + v I z2/4) = r(1 + v)(2/z)J,(z). 

If Re(l - a + v) > 0, Corollary II is applicable, and (3.21), (2.20) reduce to 

(5.2) 9( -n, n + X 1-a + v, 1 

and 

r(l + V)Pn(-z 2/r, y) = n=O (1 + fr k+a]( ) 

an-a (-n + a)k(n + + a)k 2lr)k 

(5.3)k= 
r akki 

X 4F( n + k + a,n + X+ k + a,k + 1 + v, 1 ) 

K - (-n)a(n + X)a(l - a + V)a 

(T)a 
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Then setting 

(5.4) J1ln1(z, r) = n(-z2/4, -4r/z2)/fn(-4r/z2), 
Corollary II implies 

(5.5) (2/z)'J,(z) LimJ,nl(z, r), z fixed, 0 < r ? 1. 

The following table compares j1lnJ (z, r), n = 2, 3, 4, with the true values J,(z)1 
when v = 0, a = 0, X = 0, r = 2and r = 1 in (5.2) and (5.3). 

z Jo'21(z, 1) Jo"3](z, 1) Jo [4(z, 1) JO(z) 

0.5 0.93846 89 0.93846 98 0.93846 98 0.93846 98 
1.0 0.76513 76 0.76519 71 0.76519 77 0.76519 77 

(5.6) 2.0 0.21951 22 0.22377 11 0.22388 99 0.22389 08 
5.0 -0.65203 92 -0.19368 42 -0.17434 81 -0.17759 68 
7.0 -0.39968 76 0.57946 45 0.37889 70 0.30007 93 

10.0 0.06651 11 0.99847 69 -0.30628 38 -0.24593 58 

The zeros of Jo [n (z, r) also serve as approximations to the zeros of Jo(z). The 
following table compares the zeros of j0[4] (z, 1) with the first eight zeros of Jo(z). 

First Zeros Second Zeros Third Zeros Fourth Zeros 

J57 4i(4, 1) 12.40481 69 45.49209 02 49.16537 45 zt35.88940 94 

JO(5.7 2.40482 56 45.52007 81 d8.65372 79 :11.79153 44 

For our second example, we consider the modified Bessel function K,(z) defined 
by 

( )r 1/2 
(58) K,(z) = e_ 2z E(z) 

E1 (z) = 22_ _v+ __v +_ 
r(-v+4L)r(v+i)G2 (2z 20 2) 

(5.9)2 
SFo (-v + .)2> v + 1 

| 2- )arg z < 37r/2, z -> o. 

Thus if I arg z < 7r/2, Corollary V is applicable to E,(z), and (4.43), (2.20) re- 
duce to 

(5.10) her) = 3F3( - n 
+3 + 

n-a 
-Izcf[ka (Y 

(Po(-(2z)1, y) = X; r(k - v + D)r(k + v + 1) (-2!) fUr +a]() 

= K2(-'8 ,a (-n + a)k(n + X + a)k(2z/y)Xk 
k=O (r + a)k(k - v + D)(k + v + D)k! 

(5.11)22 
(1F x -n + k + a, n + X + k + a, 1 ) 

T 3\ + k + a, -v + k + v, + k + 

K2 = r(-a + v + 3)r(-a - v + 3) +-n)a(n + X)a 
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Then if we set 

(5.12) E, In(z, r) = -so (-(2z)1, 2rz)/fn(2rz), 0 < r < 1, 

Corollary V implies 

(5.13) eV[(2z)/ir]IK,,(z) = E,(z) 
= lim E,tn(z, r), I arg z I _ r/2, z fixed, 0 < r < 1. 

nl-.300 

The following table compares E "' (z, r), n = 2, 3, 4, with the true value E,(z), 
whenv = 0, a=1, X=0, r = 2 andr = 1 in (5.10) and (5.11). 

z Eol23(z, 1) Eot3](z, 1) Eo143(z, 1) Eo(z) 

0.5 0.86799 28 0.85932 68 0.85976 96 0.85988 66 
1.0 0.91485 40 0.91283 49 0.91315 55 0.91314 94 

(5.14) 2.0 0.94959 10 0.94954 96 0.94961 34 0.94960 80 
5.0 0.97721 93 0.97735 67 0.97735 69 0.97735 67 
7.0 0.98330 78 0.98340 19 0.98340 10 0.98340 09 

10.0 0.98808 35 0.98814 00 0.98813 93 0.98813 92 

The table in (5.14) was given previously by Luke [2]. The numbers in (5.14) are 
especially interesting, if account is taken of the fact that Ko(z) has a logarithmic 
singularity at z = 0. Numerical computations seem to indicate that the argument 
restriction, I arg z I <ir/2, can be weakened to I arg z I <7r at least. 
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